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Abstract: As one of the most fundamental topics in reinforcement learning (RL), sample efficiency is essential to the

deployment of deep RL algorithms. Unlike most existing exploration methods that sample an action from different

types of posterior distributions, we focus on the policy sampling process and propose an efficient selective sampling

approach to improve sample efficiency by modeling the internal hierarchy of the environment. Specifically, we first

employ clustering methods in the policy sampling process to generate an action candidate set. Then we introduce

a clustering buffer for modeling the internal hierarchy, which consists of on-policy data, off-policy data, and expert

data to evaluate actions from the clusters in the action candidate set in the exploration stage. In this way, our

approach is able to take advantage of the supervision information in the expert demonstration data. Experiments

on six different continuous locomotion environments demonstrate superior reinforcement learning performance and

faster convergence of selective sampling. In particular, on the LGSVL task, our method can reduce the number

of convergence steps by 46.7% and the convergence time by 28.5%. Furthermore, our code is open-source for

reproducibility. The code is available at https://github.com/Shihwin/SelectiveSampling.

Key words: Reinforcement learning; Sample efficiency; Sampling process; Clustering methods; Autonomous

driving
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1 Introduction

Reinforcement learning (RL) algorithms have

recently attained significant performance in various

domains, such as autonomous vehicles (Li et al.,

2023), traffic signal control (Dai et al., 2022), active

object detection (Liu et al., 2022), and StarCraft II

(Vinyals et al., 2019). By using the reward function,

which defines what an agent should do, RL algo-
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rithms determine how to perform an action through

trial-and-error learning under supervision, maximiz-

ing the cumulative rewards. Then, agents interact

with the environment using the learned policy from

the RL algorithms.

However, the effectiveness of RL is heavily con-

strained by sample efficiency. The reason is that dur-

ing the RL training process, the agents constantly

collect experience by interacting with the environ-

ment according to the latest learned policy, and then

use experience in updating the policy (Sutton and

Barto, 1998) to maximize the expected future re-

turns. Thus, millions of samples are often required to

train a satisfactory policy to attain remarkable per-

formance improvement and robust behavior, which

www.jzus.zju.edu.cn
engineering.cae.cn
www.springerlink.com


1542 Wang et al. / Front Inform Technol Electron Eng 2023 24(11):1541-1556

results in an expensive environment interaction

process.

One way to alleviate the need for samples is

to solve the credit assignment problem to improve

sample efficiency. As one of the most successful

on-policy algorithms, proximal policy optimization

(PPO) (Schulman et al., 2017) uses a truncated ver-

sion of the generalized advantage estimator (GAE)

(Schulman et al., 2016), which employs importance

sampling to reduce sample complexity and updates a

policy with new samples acquired from the environ-

ment interaction per gradient step. Considering that

the sample complexity of an effective policy trained

with a PPO algorithm increases with increasing task

complexity, soft actor–critic (SAC) (Haarnoja et al.,

2018), one of the remarkable off-policy algorithms,

solves this issue by importing a replay buffer that

stores all transition samples.

Nevertheless, these improvements are still too

expensive to use in some costly domains, such as

robotic manipulation and autonomous driving. Al-

ternatively, model-based RL (Moerland et al., 2023)

teaches the dynamics model of the environment from

interaction experience to produce generated sam-

ples. That is, expert demonstration is regarded as

effective supervision added during training, which is

called learning from demonstration (LfD) (Ravichan-

dar et al., 2020). The aforementioned studies aim to

solve the credit assignment problem by formulating

a Q-value to represent the expected future return,

and then use it as a critic to guide the direction of

policy optimization. However, a robust and accurate

dynamics model is difficult to learn.

Another problem for sample efficiency is the

exploration–exploitation dilemma. Given an amount

of exploration, the ideal goal of bounding the ex-

pected return is unrealistic in real-world applications

because the exploration degree is hard to quantify.

Therefore, various heuristic strategies have been pro-

posed to select an appropriate action to balance

the degrees between exploration and exploitation

throughout training. Several commonly used strate-

gies, including optimistic exploration (Cheung et al.,

2020), posterior sampling (Wang and Li, 2020), and

information gain (Houthooft et al., 2016), are used to

select the following action to better maintain the del-

icate balance. However, these methods neglect the

importance of expert demonstration in exploration.

In this paper, we propose a novel and efficient

sampling approach, selective sampling, by evaluat-

ing the next action to interact with the environment.

Specifically, we model the internal hierarchy of envi-

ronments with a clustering buffer where the expert

demonstration is added with on-policy and off-policy

data. Selective sampling is performed based on clus-

ter values to improve sample efficiency. Our experi-

ments indicate that compared with other algorithms,

our proposed method can help deep RL algorithms

achieve better performance on continuous locomo-

tion tasks. Furthermore, from the application point

of view, our method can achieve performance that

surpasses those of other methods in the simulation

environment of autonomous driving. The main con-

tributions of this paper include the following: (1)

introduction of the principle of internal hierarchy to

evaluate samples with a clustering buffer during the

sampling process; (2) provision of a two-stage per-

spective of the sampling process and integration of

expert demonstration with a clustering buffer in the

exploration stage.

2 Related works

In past research, many RL algorithms try to use

expert data to achieve good results, which is called

human–machine augmented intelligence (HAI) (Xue

et al., 2022; Zhang et al., 2023a; Zhou et al., 2023).

The use of expert data in past methods can be di-

vided into expert feedback and expert data. Among

them, the learning method from expert data is

teaching–learning. The core motivation of teaching–

learning is to use expert data to guide the two critical

processes in RL, “credit distribution” and “explo-

ration and exploitation,” in the process of interac-

tion between the agent and the environment, so that

the value network and the policy network can iterate

each other under the mitigation of policy evalua-

tion and policy improvement, until the optimum is

achieved.

2.1 Guidance for value networks

In prior approaches, expert data have guided

the value network. The primary motivation for us-

ing expert data to guide the value network is the

hope that the value function can reasonably dis-

tribute credit to the expert’s state–action pair in

the policy evaluation process. For example, Hes-

ter et al. (2018) used expert data to pre-train the
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Q-value network in a deep Q-network (DQN) by in-

troducing expert data into the replay buffer, which is

called deep Q-learning from demonstration (DQfD).

Vecerik et al. (2017) applied similar ideas to deep

deterministic policy gradient (DDPG) and proposed

DDPG from demonstration (DDPGfD). Soft actor–

critic from demonstration (SACfD) (Haarnoja et al.,

2018) used a similar guidance approach for Q-value

networks in SAC.

However, the above methods require a large

sample size, which hinders their further develop-

ment. To solve the problem of high sample com-

plexity, subsequent research naturally uses the su-

pervision information contained in expert data more

directly.

2.2 Guidance for policy networks

Expert data can guide the value network and,

naturally, the policy network. The use of expert

data to guide the policy network is intended to pro-

vide guidance in the early stage of policy exploration.

This is achieved by using a pre-training method to

give the policy a good initial point in the state–action

pair space, making it closer to the expert policy.

Then, the parameters of the pre-trained policy model

are used as the initialization parameters of the policy

model in the RL agent. For example, the SAC-based

behavior cloning approach (Nair et al., 2018), the

Tencent King of Glory game AI JueWu (Ye et al.,

2020), the Go AI AlphaGo (Silver et al., 2016), and

the StarCraft II game AI AlphaStar (Vinyals et al.,

2019) all belong to this category.

2.3 Guidance for replay buffers

Expert data can directly guide the replay

buffers. This method usually modifies the sampling

mechanism of the interactive experience pool. In-

stead of random sampling, it uses a playback mecha-

nism to preferentially sample the expert data, for ex-

ample, prioritized experience replay (PER) (Schaul

et al., 2016), hindsight experience replay (HER)

(Andrychowicz et al., 2017), and attentive experi-

ence replay (AER) (Sun et al., 2020).

2.4 Guidance for the reward function

The expert data can guide the reward function.

This is done by modeling the reward function and ex-

tracting the reward information from the expert tra-

jectory data. This method of extracting knowledge

from the heuristic information of expert trajectories

is called inverse reinforcement learning (IRL). After

the generative adversarial network (GAN) was pro-

posed (Goodfellow et al., 2020), adversarial training

techniques came to the attention of RL researchers.

Ho and Ermon (2016) proposed generative adversar-

ial imitation learning (GAIL), a generative adver-

sarial network based imitation learning algorithm.

GAIL generates the predicted actions of the network

based on the generator and determines whether the

actions are derived from expert data distribution or

the network predictions based on the discriminator,

which largely extracts the supervisory information

contained in the expert data. GAIL achieves the

best results at the time in many continuous control

tasks. However, GAIL has the disadvantage of be-

ing sensitive to environmental noise. Fu et al. (2017)

proposed adversarial inverse reinforcement learning

(AIRL), which is more robust to the dynamic char-

acteristics of the environment.

3 Proposed method

3.1 Preliminaries

RL usually formulates sequential decision-

making problems as discounted finite hori-

zon Markov decision processes, defined by

M = (S,A,R, T , γ,T0), where s ∈ S represents a

state from a set of finite states, a ∈ A denotes an ac-

tion in a set of finite actions,R : S ×A →R is the re-

ward function, T : S ×A× S → R is the transition

probability distribution, T0 : S → R is the initial

state distribution, and γ ∈ (0, 1) is a discount factor.

Let π represent the current policy π : S → A and

τ represent a trajectory with length L illustrated as

τ = (s0, a0, r0, s1, a1, r1, ..., sL); then the trajectory

distribution of the current policy is described as

π(τ) = T0

L−1
∏

t=0

π(at|st)T (st+1 | st, at). (1)

The trajectory return is defined as r(τ) =
∑L−1

t=0 γtr(st, at), where t is a time step. To as-

sign credit, the Q-value function used to evaluate

the state and action is formulated as

Q(st, at) = r(st, at) + γEst+1,at+1
[Q(st+1, at+1)] .

(2)
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Thus, the objective of the expected policy return is

J (π) = Eτ∼π(τ) [r(τ)] = Es0∼T0,a0∼π(·|s0) [Q(s0, a0)] .

(3)

In SAC (Haarnoja et al., 2018), the function

approximation of the Q-value with parameter θ is

updated toward the target Q-value by using tran-

sitions sampled uniformly from the replay buffer

(st, at, rt, st+1) ∈ D to minimize the Bellman resid-

ual B(Q):

ED

[

Qθ(st, at)− rt − γEa∼πφ(·|st+1)[Qθ−(st+1, a)]
]2

,

(4)

where θ− and φ are the parameters of the target

Q-network and current policy, respectively. As in

expression (4), a ∼ πφ(· | st+1) is the formalism of

the sampling process of the policy. We can explicitly

model the policy network’s output with a Gaussian

distribution. In the implementation, the input to the

policy network is st+1, and the output is a Gaussian

distribution with mean function µ and variance func-

tion σ, which together form the action distribution.

Normally, the reparameterization trick (Kingma and

Welling, 2014) is employed to sample a continuous

action from this Gaussian distribution, shown as

a = µ(st+1) + ǫσ(st+1), ǫ ∼ N (0, I). (5)

For the delicate balance of exploration and ex-

ploitation, the well-known optimistic exploration

method, upper confidence bound (UCB) (Bellemare

et al., 2016), argues that new states are potentially

good, so we should encourage the agent to choose an

action leading to unknown states, formalized as

a = argmaxµ(st+1) +

√

2 lnL

N(a)
, (6)

where N(a) is a count-based function to record the

visiting frequency for action a.

3.2 Overview of the algorithm structure

In this subsection, we introduce our proposed

approach, selective sampling, in detail. Our goal is

to model the internal hierarchy of the environment

by clustering methods on the replay buffer and in-

troduce expert data for guidance. Furthermore, se-

lective sampling is integrated with SAC because it

achieves better performance on sample complexity

than on-policy algorithms. For better understand-

ing, we illustrate two stages of the sampling process,

target-Q stage and exploration stage, within deep

RL in Fig. 1.

In the exploration stage, we first concatenate

the on-policy data, off-policy data, and expert

data, and subsequently perform clustering opera-

tions on these data. The process divides many

high-dimensional data, which spread throughout the

state–action pair space, into several clear hierar-

chical clusters. At the same time, the clustering

process could obtain a classifier that can classify

any of the state–action pairs in the space. From

this perspective, this process models the internal

Fig. 1 Structure of selective sampling. Integrated with soft actor–critic (SAC), which determines the target-Q

stage, learner, and policy network, selective sampling with a clustering buffer consists of on-policy data, off-

policy data, and expert data that model the internal hierarchy of three environments. It takes effect mainly

in the sampling process of the exploration stage to evaluate the candidate set for the selected action
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hierarchy of the environment. After the above mod-

eling, we use the model as an evaluation criterion of

state–action pairs from the candidate set to select

an appropriate action. The candidate set is com-

posed of sampling data at the current state denoted

as Ds = {(st, a1), (st, a2), ..., (st, am)}, where sam-

pling data are acquired by using the reparameter-

ization trick in Eq. (5) from the sampling process

of policy ai ∼ πφ (· | st) isotropically, as noise ǫ is

sampled from the standard Gaussian distribution.

It is noticeable that most existing methods men-

tioned above (Houthooft et al., 2016; Cheung et al.,

2020; Wang and Li, 2020) lack explicit expert guid-

ance, and the selection of samples is based on the

principle of optimism, posterior, and information,

rather than the internal environmental hierarchy,

which is more valuable to the subsequent action.

Unlike the evaluation process of the target-Q stage,

where the Q-value function is used for evaluation,

we model the expected return of the state–action

pair of the current policy toward maximizing cumu-

lative rewards. Then, the Q-function approximator

is updated by experience algorithms such as HER

(Andrychowicz et al., 2017), PER (Schaul et al.,

2016), and AER (Sun et al., 2020). One advantage

of this is that some rarely visited but valuable states

in the replay buffer do not affect the overall perfor-

mance of the current policy. However, the target-Q

stage requires an enormous replay buffer contain-

ing millions of samples for evaluation to guide the

current policy. With sample transition denoted as

(st, at, rt, st+1), the target Q-value is formalized as

follows:

yt = rt + γ min
i=1,2

Qθ
−

i
(st+1, πφ(· | st+1)) . (7)

3.3 Algorithm details

As illustrated in Algorithm 1, a clustering buffer

is added with expert demonstration to use the advan-

tages of the Q-value function and alleviate sample

complexity. We employ clustering methods to model

the internal hierarchy of the environment as an eval-

uation criterion for the state–action pair in the can-

didate set. Let DQ represent the replay buffer that

updates the Q-value function in SAC. Typically, DQ

contains all experience and is sampled uniformly.

With the explicit reward function, it would be

easy to evaluate each sample based on the confidence

C(a) = r(st, a) of action in the collected candidate

Algorithm 1 Selective sampling

Require: on-policy data Don, off-policy data Doff, ex-

pert data DE

Ensure: learned policy πφ(a | s)

1: Initialize network parameters θ, θ−, φ

2: for each environment step do

3: Ds ← a ∼ πφ(· | st)

4: Dc ← (Don,Doff,DE)

5: Nc ← AgglomerativeClustering(Dc)

6: C ← K-means(Dc, Nc,Ds)

7: for each c in C do

8: Vη(c)←
1
nh

∑i+nh−1

k=i η(sk, ak)

9: end for

10: aselected ← Random(Softmaxc∈CVη(c))

11: st+1 ∼ T (· | st, aselected)

12: DQ ← DQ ∪ {st, aselected, rt, st+1}

13: for each gradient step do

14: θ ← θ − λQ∇θBθ(Q)

15: φ← φ− λπ∇φJφ(π)

16: θ− ← λtargetθ + (1− λtarget)θ
−

17: end for

18: end for

set, followed by selecting the action with the high-

est confidence. However, in most situations, there is

no explicit reward signal for different actions in the

current state without interacting with the environ-

ment, and this type of situation can be regarded as

the problem of implicit reward. Therefore, one fea-

sible way to solve this issue is to consider clustering

methods as an ideal similarity measure to quantify

how good an action is in the candidate set. We call

it the implicit value evaluation operation. To quan-

tify the goodness, we introduce a clustering buffer

Dc, consisting of state–action pairs from on-policy

data, off-policy data, and expert data, denoted as

Don, Doff, and DE, respectively.

These three kinds of data have their own roles

to play in Dc. First, an appropriate proportion of

expert data allows the policy network to be guided

when sampling from the action candidate set, ac-

celerating convergence and improving network per-

formance. Second, the on-policy data are helpful

in improving the accuracy of value evaluation be-

cause they ensure unbiasedness for the current policy,

and compensate for possible biases introduced dur-

ing training. Using the on-policy data can help the

policy converge to the optimal space faster while us-

ing the expert data for directed exploration. Third,

the off-policy data can improve sample efficiency.

The cooperation of the above three kinds of data
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enables selective sampling to achieve good results.

Clustering methods are used to discover the in-

ternal structure of the data itself. Compared with

neural-network-based supervised classificationmeth-

ods, they have no labels, are simple to implement,

and are easy to use. Among the latest clustering

methods, the more representative ones are deep clus-

tering methods that combine representation learning

with unsupervised learning fine-tuning, for exam-

ple, deep embedded clustering (DEC) (Xie et al.,

2016). Huang et al. (2023) proposed ProPos. This

work combines the advantages of contrastive and

non-contrastive representation learning to deal with

the class collision issue and the collapse of cluster-

ing in current deep clustering methods. Niu et al.

(2022) proposed SPICE, a semantic pseudo-labeling-

based image-clustering framework that divides the

clustering network into a feature model for measur-

ing instance-level similarity and a clustering head for

identifying cluster-level discrepancy. Also, some ap-

proaches try to eliminate the multi-stage module and

use a single network for deep clustering. For exam-

ple, Niu et al. (2020) proposed GATCluster, a self-

supervised Gaussian attention network that elimi-

nates the extraction of intermediate features followed

by traditional clustering algorithms and instead out-

puts semantic clustering labels directly without fur-

ther post-processing.

Selective sampling improves the sampling effi-

ciency of RL by (1) selectively sampling the ac-

tions used for exploration and (2) introducing ex-

pert demonstrations. To achieve this, we introduce

clustering methods to model the replay buffer con-

sisting of three kinds of data as an easy-to-use action

value assessment criterion. For implementation dif-

ficulty and model reuse feasibility, we use agglomer-

ative clustering (Murtagh and Legendre, 2014) and

K-means instead of the deep clustering approach.

Agglomerative clustering is a clustering method that

constructs data into a hierarchical structure by grad-

ually merging clusters. Compared with other cluster-

ing algorithms, which assign data to a fixed number

of clusters, agglomerative clustering creates a hier-

archy between clusters. Also, it does not require a

prior determination of the number of clusters, and

the results can be visualized and analyzed by a tree

diagram, as shown in Fig. 1. In the beginning, we

regard each state–action pair in the clustering buffer

as a cluster ci to model the internal hierarchy of the

environment by minimizing the change in variance,

where ‖ · ‖1 denotes the L1 norm and ‖ · ‖F is the

Frobenius norm:

δ(c1, c2) =
‖c1‖1‖c2‖1

‖c1‖1 + ‖c2‖1
‖c1 − c2‖F. (8)

As a result, we acquire the number of clusters

Nc on the clustering buffer. Then we employ

the K-means algorithm to classify the cluster-

ing buffer in the cluster set as C. During the

evaluation of each cluster, we use the assessment

function η of the state–action pair to evaluate

the cluster. Let h ∈ C represent one cluster

of the cluster set containing nh transitions:

(si, ai, ri, si+1), · · · , (si+nh−1, ai+nh−1, ri+nh−1, si+nh
).

Then the cluster value is

Vη(c) =
1

nh

i+nh−1
∑

k=i

η(sk, ak). (9)

Here, the assessment function η, as a reward,

provides confidence in state–action pairs such as the

reward function, Q-value function, or target-Q value.

Similarly, we employ the K-means algorithm on

cluster Ds and perform the implicit value evaluation

operation for each of these clusters. Specifically, we

use the model to classify (si, ai) ∈ Ds, and evaluate

the value of the corresponding (si, ai) based on the

mean reward of the cluster in Dc. After that, we use

the value of each (si, ai) to evaluate the value of the

clusters in Ds. Finally, we use softmax selection to

use the value of each cluster in Ds as the selection

probability. This soft selection allows the clustering

buffer to be more fully used for those samples whose

value function is underestimated, but actually has a

higher value, described as

aselected = Random(Softmaxc∈CVη(c)) . (10)

The selected action contains some similarities

to the expert policy and then affects the subse-

quent state–action distribution of the policy. Conse-

quently, the replay buffer experience used to recover

the Q-value function would be more promising.

4 Experiments

4.1 Mujoco

Experiments were performed on five challeng-

ing continuous control tasks of the benchmark suite
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Mujoco (Brockman et al., 2016) to evaluate the per-

formance of selective sampling. Compared with

the original SAC algorithm, under different envi-

ronments and configurations, we focused mainly on

the sample complexity and convergence performance

in five Mujoco environments, including Hopper-v3,

Ant-v3, HalfCheetah-v3, Reacher-v2, and Walker2d-

v3. In this subsection, we will first introduce our ex-

perimental environments and implementation. After

that, we will present the results and discussion.

4.1.1 Environments and implementation

The goal of the Reacher-v2 task is to move the

robot’s end effector close to a target spawned at a

random position. Moreover, the four other locomo-

tion tasks aim to move forward as quickly as possible.

In these environments, the state represents position,

velocity, and acceleration, while the action space en-

capsulates joint forces or torques to control the sys-

tem. The dimensions of these states and actions are

listed in Table 1.

Table 1 Environmental dimensions

Task
Dimension

State Action

Hopper-v3 11 3

HalfCheetah-v3 17 6

Ant-3 111 8

Reacher-v2 11 2

Walker2d-v3 17 6

Each experiment with a specified configuration

was initialized with 10 random seeds to guarantee

stability and to average the test episode reward dur-

ing training for evaluation. Beginning with random

exploration, the learning process was launched after

50 000 steps. Then, every four steps, we proceeded

with a gradient update for the Q-network and policy

network with policy delay, where the Adam opti-

mizer was initialized with a 3 × 10−4 learning rate,

and a batch size of 512 was used to perform the

update. Meanwhile, to ensure the stability of the

clustering buffer, the clustering buffer was updated

every 1000 steps. In the Hopper-v3, Ant-v3, and

HalfCheetah-v3 environments, we conducted abla-

tion experiments by adjusting the ratio of on-policy,

off-policy, and expert data that composed the clus-

tering buffer. Specifically, the on-policy degree was

2048, which measures how many of the latest in-

teraction samples lie in the on-policy buffer. With

the size of the clustering buffer fixed at 4096, the

112-configuration in our methods means that 1024

on-policy state–action pairs were sampled from the

on-policy buffer (size of 2048), 1024 off-policy state–

action pairs were sampled from the replay buffer, and

2048 expert state–action pairs were sampled from

the expert buffer. In addition, data of the expert

buffer were generated by running the expert policy

trained with TRPO (Schulman et al., 2015) in place

of human demonstration in reality. Similarly, we per-

formed a 211-configuration of selective sampling in

our experiments.

4.1.2 Results and discussion

Fig. 2 shows that our method learned rapidly

at first and achieved better performance and higher

sample efficiency. In addition, as shown in Fig. 2c,

the ablation study demonstrates the importance of

introducing expert data into the clustering buffer be-

cause the model with added expert data converged

to better performance. In particular, when only off-

policy clustering was used as an evaluation criterion,

the ablation study struggled like the SAC algorithm.

The above results suggest that our method can ex-

ploit valuable supervision in the form of an inter-

nal hierarchy from the clustering buffer in the explo-

ration stage.

Based on the results of the ablation experiments

with the 112-configuration and the 211-configuration

in different environments, we found that in the

HalfCheetah-v3 environment, the 112-configuration

worked better than the 211-configuration, but in

the Ant-v3 and Hopper-v3 environments, the results

were reversed. This phenomenon occurs because in

different environments, the agent’s skeletal structure

is different, resulting in different proportional deriva-

tive (PD) control of the agent’s motion. Specifically,

in the Hopper-v3 environment, the agent’s skeletal

structure is the simplest. In the Ant-v3 environment,

the agent is a quadrupedal structure, which allows

the agent to remain stable at the beginning and also

makes it easier for the agent to move forward to ob-

tain the reward. In contrast, in the HalfCheetah-v3

environment, the agent is a bipedal structure, and

its front and rear foot structures are different. At

the same time, its rear foot has the highest degree

of freedom among all the agents above, making it

the most difficult to walk stably. As we discussed
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Fig. 2 Training curves in three environments of con-

tinuous control tasks: (a) Hopper-v3; (b) Ant-v3; (c)

HalfCheetah-v3. For these plots, the x axis denotes

the number of interaction steps, which reflects the

sample complexity. The solid curves correspond to

the mean and the shaded region to the range of one

standard deviation from the mean episode reward

over 10 random seeds. We average the value taken

from each point itself with the value taken from the

next point as the final value for the current point.

The SAC+on-policy setting refers to constructing the

clustering buffer using only the on-policy data, while

the SAC+off-policy setting and the SAC+expert set-

ting are defined similarly. The numbers in selective

sampling (112, 211) indicate the proportions of on-

policy, off-policy, and expert data in the clustering

buffer, separately

earlier, expert data allow the policy network to be

guided when selecting actions from the action candi-

date set. When the structure of the agent makes it

more difficult to obtain rewards, the reliance on ex-

pert guidance is also higher to some extent. This ex-

plains why the conclusion as to which configuration

will achieve the best performance will be different in

different environments.

As shown in Figs. 2a and 2b, in the Hopper-

v3 and Ant-v3 environments, the 211-configuration

outperformed the other settings. Similarly, in the ab-

lation study of the HalfCheetah-v3 environment, as

shown in Fig. 2c, the 112-configuration outperformed

the on-policy and expert data setup. Meanwhile, the

211-configuration, although slightly worsened at the

beginning of the training, was able to reach the same

level as the first three at the end of the training.

In other words, the setup containing all the three

kinds of data has the potential to outperform all

other setups while staying caught up in the slightly

worse cases. Therefore, we believe that a setup with

three kinds of data is more general. It illustrates

that better performance requires the interplay of all

three kinds of data, as discussed above. Note that

the 112-configuration and the 211-configuration had

significantly better performance than the baseline in

the Hopper-v3 and HalfCheetah-v3 environments.

To give more insight into how each of the on-

policy data, off-policy data, and expert data influ-

ences the performance of selective sampling, we sup-

plemented ablation experiments without one of the

three kinds of data in the HalfCheetah-v3 environ-

ment, as shown in Fig. 3a.

We can see that the performance of the 112-

configuration was still optimal, and that the model

performance decreased after removing any of the

three kinds of data. At the early stage of training, the

112-configuration, the SAC+on-policy+expert set-

ting, and the SAC+off-policy+expert setting con-

verged similarly faster than the other settings be-

tween 0 and 2 × 105 steps, because they had the

same amount of expert data. This indicates that

more expert data can guide the model to converge

faster in the early stage. However, the conver-

gence speeds of the SAC+on-policy+expert setting

and the SAC+off-policy+expert setting decreased in

the subsequent training phase. This illustrates that

in the absence of one kind of data, the advantage

brought by expert data in the early stage of training
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Fig. 3 Training curves in three environments of

continuous control tasks: (a) HalfCheetah-v3; (b)

Reacher-v2; (c) Walker2d-v3. For these plots, the

x axis denotes the number of interaction steps, which

reflects the sample complexity. The solid curves

correspond to the mean and the shaded region to

the range of one standard deviation from the mean

episode reward over 10 random seeds. The SAC+on-

policy+off-policy setting refers to constructing the

clustering buffer using the on-policy and off-policy

data. The SAC+off-policy+expert setting and the

SAC+on-policy+expert setting are defined similarly

may not be maintained. In addition, although the

SAC+on-policy+off-policy setting achieved similar

performance to the 112-configuration in the middle

part of the training, it converged slower than the

112-configuration in the early stage and had worse

performance in the final stage than both the 112-

configuration and 211-configuration. This experi-

ment again illustrates that better performance re-

quires interplay among all three kinds of data.

To further demonstrate the effectiveness of se-

lective sampling, we conducted experiments with

the 112-configuration and 211-configuration in two

additional Mujoco environments, Reacher-v2 and

Walker2d-v3.

As shown in Fig. 3b, in the Reacher-v2 en-

vironment, both the 112-configuration and 211-

configuration converged faster initially and eventu-

ally to a better level. The lower difficulty of this task

led to similar results for both configurations. The

reason for the different starting heights is that the

first point was drawn at the 20 000th step in our im-

plementation. As shown in Fig. 3c, in the Walker2d-

v3 environment, both the 112-configuration and

211-configuration achieved faster initial convergence

compared to the baseline. The 112-configuration

had the best performance finally. The above results

showed that selective sampling can improve model

performance in these two environments, making the

previous conclusions more convincing.

To showmore details on the clustering buffer, we

provide the trend of the ratio of expert data in the

clustering buffer Dc over time in the three Mujoco

environments, as shown in Fig. 4.

The percentage of expert data was high at the

beginning in all the three environments. It is be-

cause the rewards of expert data were much larger

than those of the two other kinds of data in the early

stage, and the positions of expert data were closer

to each other in the feature space. As a result, when

we selected the top five clusters with the highest

mean reward, we will naturally select several clus-

ters mainly composed of expert data. In addition, in

the 112-configuration, the percentage of expert data

in the clustering buffer was twice as large as that

in the 211-configuration. We can also see that this

advantage can be maintained until the convergence

stage in all the three environments, indicating that

our settings for the percentage of expert data in the

clustering buffer were consistently effective. This
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Fig. 4 The trend of the ratio of expert data in the

clustering buffer Dc over time in the three environ-

ments of Mujoco, using the 112-configuration and

211-configuration: (a) Hopper-v3; (b) Ant-v3; (c)

HalfCheetah-v3. The numbers in the 112- and 211-

configuration indicate the proportions of on-policy,

off-policy, and expert data in the clustering buffer,

separately. For these plots, the x axis denotes the

number of interaction steps. We select the top five

clusters with the highest mean reward in the cluster-

ing buffer Dc. The solid curves correspond to the

mean and the shaded region to the range of one stan-

dard deviation from the mean value over five clusters

advantage was more beneficial for a task like

HalfCheetah-v3, which is significantly dependent on

expert demonstration. This explains why it per-

formed better in the 112-configuration.

To summarize, the results demonstrated the im-

portance of introducing expert data into the clus-

tering buffer, and our method can exploit valuable

supervision from it. The amount of expert data is

crucial, but it also needs to be specifically analyzed

with the specific environment. When using selective

sampling, our suggestion is to use all the three kinds

of data, which can be more general. In particular,

in some environments where there is a high depen-

dency on expert demonstration, we can consider in-

creasing the proportion of expert data. There are

four main linkage criteria in agglomerative cluster-

ing. The ward setting minimizes the variance of the

clusters being merged. It has been used in previ-

ous experiments. The average setting uses the av-

erage distances of each observation of the two sets.

The complete setting uses the maximum distance be-

tween all observations of the two sets, and the single

setting uses the minimum distance. To explore which

linkage criterion is the best, we conducted supple-

mentary ablation experiments in the HalfCheetah-

v3 environment, with one training session for each

linkage criterion setting and 1 × 106 steps for each

training session. Table 2 shows the test episode re-

ward that the model can obtain as training proceeds

using different linkage criteria.

Table 2 Ablation study of linkage criteria

Stage
Number of

steps (×106)

Test episode reward

Ward Average Complete Single

Early

0.1 3197 909 1003 938.8

0.2 3968 3167 1206 1295

0.3 4539 4603 2810 3367

Middle
0.5 5188 5658 4363 4216

0.6 5651 5874 4401 4509

Final 1.0 6622 7645 4947 5252

The bold number indicates which linkage criterion receives the

greatest test episode reward at a particular moment

The ward setting had the highest initial con-

vergence speed, significantly ahead of the other set-

tings. The average setting was the second, and the

single and complete settings the lowest. However,

the average setting can catch up to a level similar

to the ward setting, at around 3 × 105 steps, and
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performed better than the ward setting after 5× 105

steps.

In selective sampling, a different linkage crite-

rion causes a different number of clusters for the

K-means method, which affects the final structure

of the clustering buffer. The following conclusions

can be drawn: among the four linkage criteria, the

ward setting achieves the best balance between the

initial speed and the later performance. The aver-

age setting sacrifices part of the initial speed but

can obtain better performance in the later period.

The performances of single and complete settings are

similar to that of the original SAC algorithm. Ac-

cording to the application requirements, the imple-

mentation of selective sampling can be considered in

the choice between the ward setting and the average

setting.

4.2 LGSVL

Autonomous driving is an essential application

of RL, often involving a significant amount of data

(Zhang et al., 2023b), which makes sample efficiency

critical. To further evaluate the performance of se-

lective sampling, we performed full experiments on

an end-to-end task of autonomous driving on the

LGSVL (SVL Simulator by LG) simulation plat-

form (Rong et al., 2020). LGSVL is an open-

source simulation platform developed by LG for au-

tonomous driving testing. Its implementation of the

Python application programming interface (API) en-

ables us to easily adjust to maps, vehicles, sunlight,

and weather to obtain large-scale, diverse, and cus-

tomized autonomous driving testing scenarios. In

our experiments, we used the Python API to set up

the experimental task, providing the environment

abstraction needed for selective sampling. The ver-

sion of LGSVL used here was svlsimulator-linux64-

2021.2.2.

In this subsection, we will first introduce the

specific task details and the experimental environ-

ments. As an important part of the task setup, we

will introduce the reward function settings. After

that, we will present the experimental implementa-

tion. At the end of this subsection, we will show

the results and discuss the results of the ablation

experiments.

4.2.1 Task details

The current implementation of autonomous

driving systems is divided into two main technical

routes: modular and end-to-end autonomous driving

systems. The modular autonomous driving system is

artificially divided into three major modules: percep-

tion, planning, and control. In contrast, the end-to-

end autonomous driving system uses a single model

as a direct solver from sensor input to controller out-

put. Considering that the focus of this paper is on

RL with high sampling efficiency rather than the co-

ordinated cooperation of different algorithms among

different modules, we set an end-to-end autonomous

driving task.

We set up the experiments in the “Shalun”

map provided by the LGSVL simulation platform,

a digital twin map of a realistic closed test site for

autonomous vehicles built by Taiwan CAR Lab in

Guiren District, Tainan City, China. As shown in

Fig. 5a, this autonomous vehicle test site was de-

signed specifically for Asian road conditions and con-

tains rich map elements: straight lanes, curved lanes,

intersections, traffic signals, circular lanes, tunnels,

railroad level crossings, etc. The section of road

shown in Fig. 5b was selected as the task scope for

our experiments. There was a composite road, which

consisted of a straight road and a curved road.

Here we call the vehicle equipped with our au-

tonomous driving system the Ego Car. The spe-

cific task set in this subsection is to train an au-

tonomous driving system to be able to compute the

specific control signals that the Ego Car should take

at the current moment to perform safe, legal, start-

to-finish driving, using the signals from the front

camera mounted on the Ego Car. Making the whole

task more difficult, the initial starting point of the

Ego Car (yellow “Start” in Fig. 5b) was placed in the

right lane of a straight section of that road, while the

endpoint (red “End” in Fig. 5b) was placed in the

left lane of a curved section of that road. In other

words, the automated driving system needed to drive

the Ego Car along the lane in a straight line at the

beginning, change to the left lane at the appropriate

time, and drive along the curve of the lane near the

endpoint. No collision with obstacles and no illegal

driving behavior were permitted. Finally, the Ego

Car arrived at the endpoint successfully. Overall,

this composite autonomous driving task contained
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Fig. 5 Details in the LGSVL experiment: (a) full-size bird-eye view of Shalun; (b) experimental range we

choose to perform our experiments, where the yellow point represents the starting point of the Ego Car and

the red point represents the end point of the Ego Car; (c) front camera view of the Ego Car; (d) overhead

view of the Ego Car. References to color refer to the online version of this figure

several sub-tasks with a certain degree of difficulty

and training significance.

4.2.2 Environments

In the experiments, we still used the Open AI

Gym (Brockman et al., 2016) RL environment ab-

straction format, including state, action, and reward

functions.

1. State

We used the image from the front view camera

mounted on the front of the Ego Car as the state

representation of the environment. Specifically, at

any moment, it is a 1920 × 1080 image in JPEG

format, divided into three RGB channels, with one

pixel under each channel taking values in the range

[0, 255]. For ease of computation and to compress the

state dimension, we compressed this original image

to a 128× 128× 3 matrix representation.

2. Action

We defined the output actions of the policy net-

work in the reinforcement learning model as a 1 × 2

vector, where each dimension corresponds to the

steering wheel and the pedal operations of the Ego

Car in the LGSVL simulation platform. First, we

implemented the steering operation with the first di-

mension, which takes values in the range of [−1, 1].

The value −1 represents the maximum degree of

steering wheel leftward rotation applied, the value

0 represents the steering wheel maintaining straight-

forward operation, and the value 1 represents the

maximum degree of steering wheel rightward rota-

tion applied. The rest of the values are applied to

the corresponding degree of steering wheel leftward

or rightward rotation according to the absolute value

of the variable. Second, we implemented the throttle

pedal and the brake pedal using the second dimen-

sion, which still takes values in the range [−1, 1]. If

this dimension takes values in (0, 1], the brake pedal

application degree will be set to 0, and the throt-

tle pedal application degree is set according to the

variable. Specifically, 1 represents the maximum ap-

plication degree of the throttle pedal, and a value

closer to 0 represents a smaller application degree.

Similarly, if this dimension is in [−1, 0), the degree

of application of the throttle pedal will be set to 0,

and the degree of application of the brake pedal is

set according to the absolute value of the magnitude.

Specifically, −1 represents the maximum degree of

application of the brake pedal, and a value closer to

0 represents a smaller degree of application.

3. Reward function

The reward function is usually set from some

prior human knowledge for safe driving, such as we

cannot collide with other things, we cannot violate

traffic rules, and we need to drive to the specified

target. An appropriate reward function setting can

significantly improve the convergence speed of the

RL network and the final model performance. The

reward function setup in the experiments was divided

into four parts: risk-driving behavior penalties, bad-

driving behavior penalties, moving forward rewards,

and goal rewards. The specific implementation is

summarized in Table 3.

We gave a one-time penalty of −30 and termi-

nated the current epoch when we detected collisions

with other elements of the map (located on the right

side of the Ego Car) and when driving across double

yellow lines into the opposite lane (located on the

left side of the Ego Car). In addition, we calculated

the vertical projection distance (in meters) between

the current Ego Car position and the road centerline

at each step, multiplied it by a factor of −1.4, and
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Table 3 Reward function settings

Category Operation Value Ratio

Collision End epoch, one-time penalty −30 1.0

Retrograde End epoch, one-time penalty −30 1.0

Centerline departure Give by step Euclidean distance −1.4

Moving forward Give by step Euclidean distance 2.4

Nearing goal (≤5 m) Give by step (≤10 steps) Reward assignment 1.0 (decrease), −0.5 (expand)

Goal (≤2 m) End epoch, one-time reward Reward assignment 1.0

counted it in the reward function. We also calcu-

lated the distance (in meters) traveled by the Ego

Car for this step, multiplied it by 2.4, and counted

it in the reward function. In the goal detection part,

we added a well-designed reward calculation method,

which was divided into four parts.

First, we designed the reward credit assignment

within 5 m near the endpoint, described as

r
goal
t =

400

‖Xgoal
t −X

ego
t ‖F + 1

, (11)

where X
goal represents the coordinates of the end-

point andX
ego represents the coordinates of the Ego

Car. The left part of the denominator calculates the

Euclidean distance between the two coordinates at

this step. The visualization of the reward is shown in

Fig. 6, where the reward obtained by Ego increased

faster when Ego got closer to the endpoint.

Fig. 6 Reward credit assignment

Second we judged whether the distance was de-

creasing or expanding, multiplied the corresponding

factor of 1.0 or −0.5, and counted it in the reward

function. If not, the Ego Car will receive a huge cu-

mulative reward by passing through an area ≥2 m

and ≤5 m from the endpoint, which is not what we

expect. Third, we calculated the number of steps to

obtain the credit assignment reward, and terminated

the current epoch after reaching the limit number of

10. If not, the Ego Car will stop 2 m away from the

endpoint to obtain a huge cumulative reward, which

is not what we expect. Fourth, we judged that the

goal was reached when it reached 2 m near the end-

point and terminated the current epoch.

4.2.3 Implementation

In this part, each experiment with a speci-

fied configuration was initialized with 10 random

seeds. The initial random exploration was 2048

steps. The Adam optimizer was initialized with

a 3 × 10−4 learning rate, and a batch size of 256

was used to perform gradient update for the Q-

network and policy network. The clustering buffer

was updated every 200 steps. We also conducted

ablation experiments by adjusting the ratio of on-

policy, off-policy, and expert data. Specifically,

the on-policy degree was 1200, which measures how

many of the latest interaction samples were in the

on-policy buffer. With the size of the clustering

buffer fixed at 2048, the 112-configuration in our

methods means that 512 on-policy state–action pairs

were sampled from the on-policy buffer, 512 off-

policy state–action pairs sampled from the replay

buffer, and 1024 expert state–action pairs sampled

from the expert buffer. Similarly, we performed

the 116-configuration, 134-configuration, and 314-

configuration of selective sampling in our experi-

ments. In addition, expert buffer data were gener-

ated by running the expert policy trained with SAC

in place of human demonstration in reality.

4.2.4 Results and discussion

Fig. 7a shows that our approach provided bet-

ter guidance signals for the policy network, allow-

ing the model to converge faster and achieve better

performance and higher sample efficiency than the
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Fig. 7 Training curves of three different configura-

tions: (a) baseline and 112; (b) baseline, 112, and 116;

(c) baseline, 112, 134, and 314. For these plots, the

x axis denotes the number of interaction steps, which

reflects the sample complexity. The solid curves cor-

respond to the mean, and the shaded region corre-

sponds to the range of one standard deviation from

the mean episode reward over 10 random seeds. The

numbers in selective sampling indicate the propor-

tions of on-policy, off-policy, and expert data in the

clustering buffer, separately

baseline. A higher convergence value means that the

Ego Car will have a lower speed before reaching the

goal to obtain the nearing goal reward for more steps,

which is exactly what we expect.

In addition, in the 116-configuration experi-

ments as shown in Fig. 7b, we found that settings too

biased toward expert data introduced greater volatil-

ity. This is because too many expert data crowd out

the sampling of on-policy and off-policy data during

training, and the large difference between the current

policy and expert policy can cause instability.

According to Fig. 7c, the 314-configuration out-

performed the 134-configuration. This is because

the autonomous driving task is much more complex

in terms of the environment state compared to the

previous experiments. Therefore, it relies more on

the on-policy data, which can eliminate the bias.

The number of steps required to reach the same

level, which means the test episode reward was≥450,

was reduced from 3×104 to 1.6×104. It was a 46.7%

reduction. Considering the additional computation

caused by our method, we calculated the actual time

cost of both approaches. In terms of training time,

the time required to reach the same level was reduced

by 28.5% (from an average of 10 768.25 s to 7701.4 s).

This result shows that our approach is still practical

for application scenarios that require high algorithm

generalizability, such as autonomous driving.

5 Conclusions

We propose to separate on-policy, off-policy, and

expert demonstration into a clustering buffer and

then use the selective sampling model and the inter-

nal environment hierarchy as an evaluation criterion.

Our experimental results demonstrate that sample

complexity is improved for faster convergence and

better prediction performance on continuous loco-

motion tasks, which makes deploying the RL algo-

rithm more practical for the new environment. For

future studies, we will investigate a more suitable

structure for retaining the internal hierarchy of clus-

tering buffers and develop a more advanced and com-

putationally efficient method to select the following

action.
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